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ARTICLEINFO ABSTRACT

Keywords: Motivated by the goal of increasing the use of renewable energies as a vital part of the energy transition, altering
Demand response energy consumption in off-grid areas, and involving consumers in the decision-making process of the electricity
Modeling

market, demand response programs are considered essential measures to achieve these goals without requiring
highly advanced technologies. The research findings demonstrate that the time-of-use model aids the transition
to cleaner energy, offering multiple benefits to consumers.These benefits include reduced energy bills, enhanced
quality of life due to lower CO2 emissions, decreased energy subsidies, and reduced dependency on diesel fuel for
electricity generation in regions where approximately 84 % of the capacity is derived from diesel. An innovative
aspect of this study is proposing the transition from a quasi-inelastic to elastic demand electricity market in off-
grid areas in Colombia, based on the evaluated benefits of the Time of Use Model over a specific time horizon.
The principal reduction results related to the base consumption in the case study are as follows: peak hours (52.5
kWh/day), hours of maximum solar radiation (203.2 kWh/day), and CO, emissions (10 TonEq/year). These
findings confirm that demand response is critical in enabling and facilitating the energy transition in off-grid

Non-interconnected zones
Price-demand elasticity

regions, where renewable energy sources and economic incentives are underutilized

1. Introduction

Demand Response involves adjusting electricity usage to align with
price signals or economic incentives set by energy providers. This allows
consumers to actively manage their energy consumption and signifi-
cantly reduce and modify energy use within the energy system [1]. One
of the challenges of this research is to model the behavior of energy
demand in the municipality of Miraflores, a region isolated from the
power grid. This involves incorporating Demand Response programs,
using TOU and TOU INC mathematical models.. With the results ob-
tained, it is intended to replicate the model in other areas not connected
to the regional electricity distribution networks, such as NIZ [2]. These
regions are characterized by significant geographic dispersion, diverse
renewable energy potential, and limited energy data. The promotion of
the DR model is fundamental due to its potential to improve efficiency in
the coverage of energy demand, increase the reliability of the energy
system, and encourage the adoption of new tariff models based on prices

and economic incentives [3,4].

In Colombia, the tariff system for residential users is based on a tariff
known as Monomial, which means that it has a single value expressed in
$/kWh regardless of the time or amount of consumption; this type of
tariff does not indicate to residential users the price of electricity based
on their daily demand [5,6]. The subsidy regulations and electricity
service tariffs that apply in regions not connected to the grid, as is the
case of the municipality of Miraflores, are different from the tariff for-
mulas that apply in the National Interconnected System (NIS). The cost
of electricity and the price paid by consumers is known as the tariff
structure, which is calculated by adding the costs of each stage of the
electricity value chain. The price of electricity is determined based on its
average costs and represents a constant value for the user, therefore the
price does not influence the decision to consume more or less electricity
at any given time. It is essential to examine how the TOU model in this
off-grid region encourages the shifting of energy consumption to
different times of the day with pre-set electricity prices.

Abbreviations: DR, Demand Response; TOU, Time of Use; TOU+INC, Time Of Use +Incentives; NIZ, Non-Interconnected Zones of Colombia; NIS, National
Interconnected System; CPP, Critical Peak Price; RTP, (Real-Time Price; MLPM, Mixed Linear Programming Model; ARIMA, Auto Regressive Integrated Moving

Average.
* Corresponding author.
E-mail address: fredy.mesa@libertadores.edu.co (F. Mesa).

https://doi.org/10.1016/j.rset.2025.100115

Received 26 August 2024; Received in revised form 21 April 2025; Accepted 21 April 2025

Available online 24 April 2025

2667-095X,/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses,/by/4.0/).

Powered by CamScanner


https://v3.camscanner.com/user/download

J.A. Valencia et al.

Regarding the benefits of demand response (DR) models, there are
advantages from the demand side. These include reducing energy con-
sumption during high tariff prices and shifting consumption to periods
of intermediate demand [3]. This dynamic encourages active consumer
participation in the energy market. It is essential to promote DR pro-
grams due to their potential to increase energy demand coverage in
off-grid regions efficiently, improve the reliability of an energy system,
and encourage the adoption of new tariff models based on prices and
economic incentives. Related studies incorporate optimization theories
to DR programs by reducing electricity costs and increasing demand
elasticity [7-10]. Now, from the generation side, Other aspects related
to network decongestion and energy optimization are mentioned in
[11]. One key benefit is the integration of renewables into the power
grid, which is easier with DR programs. While renewables experience
fluctuations in their supply due to site-specific weather conditions or
peak hours, the flexibility of DR effectively aligns with this variability,
meaning that energy consumption can be shifted to periods of higher
renewable energy production. Renewables, therefore, influence the
setting of optimal electricity prices due to their costs and are promoted
through DR at specific times [3,12]. Different conceptual developments
and mathematical formulations of DR models are detailed in [13-16].

Through mathematical modeling, this article contributes to the un-
derstanding and importance of the dynamics of DR programs in energy
behavior, as well as the possible convergence of these dynamics with the
implications of reducing energy consumption, CO; emissions, and
electricity prices. This paper is organized as follows: First, a literature
review describing the classification of DR programs, the advantages of
their application, and related mathematical models. Second, a mathe-
matical TOU model supplemented with economic incentives is described
and formulated. Third, numerical simulations and analysis of results are
carried out under different scenarios, such as the incorporation of in-
centives according to the percentage of demand reduction by the con-
sumer, variation of electricity prices by hourly segments, and self-
generation at peak solar radiation hours. Finally, conclusions are
drawn about the impacts of DR in the Off-grid regions known as NIZs in
Colombia. The results of this study enable the proposal of a new
framework for the electricity market in this economically underdevel-
oped region, enhancing demand elasticity and facilitating the local en-
ergy transition

2. Demand response options

Throughout the literature, it has been identified that demand
response programs are classified into two groups: price and economic
incentives; in the first option, consumers voluntarily change or reduce
their consumption in response to economic signals sent by a generating
agent, and the following programs are identified among others: TOU,
CPP, RTP . For the second option, programs based on economic in-
centives are identified as voluntary, mandatory, and market programs
[3]. The time-of-use model is characterized by setting electricity prices
in advance by periods, representing the electricity’s levelized cost. In
different articles, it is observed that the periods are classified into valley
hours, where energy demand and energy prices are relatively low; peak
hours, where energy demand and prices are high; and finally, off-peak
hours, where demand and prices acquire intermediate values [17-19].
Authors typically express the TOU model as a linear equation, where
each hour’s adjusted energy demand is determined based on the
price-demand elasticity of price variation and electricity demand over
periods [20,21]. While not an essential part of the present research,
other models found in the literature are the RTP (Real-Time Price)
model, which establishes prices that fluctuate continuously during a
day, as opposed to Time of Use Tariffs, which establish electricity prices
by hourly segments [22]. Providing a variable price signal with a given
time-frequency can contribute to several system benefits, including
decongestion of distribution networks, reduction of technical losses, and
postponement of investments in generation capacity [23]. Finally, the
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CPP (Critical Peak Price) model, although not developed in this article,
combines the previous models; it differs in that it increases the price of
energy during peak hours mainly due to programmed or critical situa-
tions to discourage consumption during this period, in some cases, in-
centives are implemented by lowering the price of energy during
off-peak hours [24,22]

Referring to mathematical models applied to DR, in [25], a linear
optimal TOU model is formulated that makes energy demand more
flexible in the face of power variations in electrical distribution net-
works. Also, in reference [26], a mixed linear programming model
(MLPM) is identified, which integrates TOU models with other DR
models applied it to a residential community with the availability of
renewable energy potentials and energy storage.

Existing demand response models and studies have mostly been
developed for grid-connected regions [19]. This study addresses the
main research gaps by applying TOU modeling in off-grid areas, high-
lighting the challenges and opportunities often overlooked in these
contexts. It is a pioneering effort to assess the feasibility and effective-
ness of the TOU model in off-grid regions characterized by centralized
electricity infrastructures and significantly different energy generation
and consumption patterns compared to those found in grid-connected
areas. It effectively addresses several critical gaps.: a) Integration with
Renewable Energy Resources: The off-grid regions studied have significant
potential for renewable energy sources, such as solar and hydro. How-
ever, previous studies on demand response have not sufficiently
explored how renewable energy generation impacts demand response
strategies in these areas. This research aims to fill that gap by examining
how renewable generation periods can be incorporated into TOU pricing
models to optimize and modify energy consumption patterns. b) Elas-
ticity demand: A significant gap in the existing literature is the lack of
research on how the adoption of renewable energy affects demand
elasticity in off-grid regions, particularly in the context of TOU pricing
models. The relationship between self-generation using renewable en-
ergy and time-varying pricing remains poorly understood. Therefore, a
key challenge of this study is to assess how sensitive demand is to price
fluctuations and to determine the extent to which renewable energy
adoption influences or mitigates demand elasticity within TOU pricing
models.

From the literature review and other related literature, there is no
evidence of the application of the TOU Model to solve problems related
to inelastic demand, sizing, and fuel consumption in Off-grid regions of
Colombia, nor the results of the application of this model.

3. Formulation model
3.1. Price-Based demand response modeling

Elasticity is an essential concept in economic theory. It quantifies
how a variable changes when another variable is modified. It is used in
analyzing demand, different types of goods in consumer theory, mar-
ginal concepts in the theory of the firm, and the distribution of wealth
[27]. The concept of elasticity in energy terms refers to the sensitivity of
energy demand to changes in the price of electricity [3]. This is typically
expressed as E = po.so/do.ap. Accordingly, the elasticity of demand in
the i-th period due to price changes in the j-th period can be mathe-
matically defined as follows: E(i,j) = po(j).ad(i)/do(i).ep(j), and is
referred to as cross elasticity. Furthermore, the elasticity of demand to
price changes in the same period is known as self-elasticity.

When considering energy consumption that cannot be shifted from
one period to another, such as with lighting systems used at specific
times, we model these consumptions under the concept of "Autoelas-
ticity." For consumptions that can be shifted, such as those managed at
times other than the usual periods of use, we model them under the
concept of Cross Elasticity. To model a 24-hour energy consumption
period, a 24 x 24 matrix must be constructed. In this matrix, the diag-
onal elements represent the Autoelasticities, and the non-diagonal
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elements represent the Cross Elasticities [17,3], as shown in Eq. (1).

[ Ad(1)
Ad(2) [ E(1,1) E(1,3) ... E(1,24)7 [ Ap(1)
B2 B o s Ap(j)
=3 X (1)
i E(24.j) | 1 ﬂ_.:;&#} {
| Ad(24) |

Column j of this matrix indicates how a change in price during period
j affects demand during all periods. Where Ad(i) is the change in de-
mand from an initial period to a final period, Ap(i) represents the change
in electricity prices from an initial period to a final period.

- TOU Model

According to Eq. (2), the TOU model is formulated as a linear
equation where the hourly modified energy demand is determined as a
function of the price-demand elasticity, the electricity price variation,
and the electricity demand variation in period intervals [20].

24

d(i) = do(i) + ) (Eﬂl{i._ j)

j=1

do(i) , .. .
. - 2
o) ~po(i)]) @

d(i)= demand in the period i with application DR

do(i)= Initial Demand in period i

Eo(i,j)= Elasticity of Demand as a function of price

po(j)= Initial price of electricity before DR ($/kWh)

p(j)= Final price of electricity with DR application ($/kWh)

3.2. Price-Based demand response and incentives
- TOU Model+INC

The TOU+INC model effectively integrates pre-established energy
prices with economic incentives to reward consumers for load reduction
in specific periods. Eq. (3) simplifies a multiperiod extended linear
model, contributing to a more streamlined and efficient process. A (j)
symbolizes the economic incentive a demand aggregator provides to a
consumer, encouraging them to reduce energy consumption in a specific
period. This model is designed to determine the advantages consumers
can enjoy by adjusting their consumption habits.

5 . ———. R
d(i)= {do(i) + ) (Eﬂ“"" }PﬂU}'L’pU} poy) +AUJ])} (3)
= {1+ E®D)[p(i) — po(i) +A(i)] /po(D)] }

Where:

E(i)= Elasticity of Demand in period i

po(i)= Initial price of electricity before DR (USD/kWh)

p(i)= Final price of electricity with DR application (USD/kWh)
A(i)= Economic incentive in period i ((USD/kWh)

The behavior of electric loads that respond to economic incentives is
considered a function of this recognition. The S-shaped curve used in
[21] and shown in Fig. 1 is proposed to model this dependence.

This curve represents a graphical function where the incentive, as an
independent variable granted to the consumer, promotes the percentage
of participation in the reduction of energy consumption at peak hours or
in a given period. The maximum percentage of participation, fdmax, can
be determined from Eq. (4).
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Fig. 1. Incentive-load participation characteristic.
Bmax = at. Dmaxt (4)
Where:
p™** = demand sensitive to price and incentive variations at time t

«;, = Ratio of price and incentive-based charges to total demand at
time t
Dmax t = Total electricity demand at time t [MW].

Depicted to the cost savings It stabilised an Equivalent Unit Cost of
Electricity as a function of the reduced consumption from implementing
the DR TOU+INC model. The variance between the energy reductions
brought about by the economic incentive and the actual consumption is
determined using Eq. (5). The outcomes are presented in Table 1.

EUCi = AUCi — AUCIL.(ER)/AC (5)
Where;

EUCi= Equivalent Unit Cost in period i

AUCi= Actual Unit Cost before DR in period i
ER= Energy reduction or savings target after DR
AC= Actual Consumption before DR

3.3. Energy demand forecasting model

The ARIMA model uses data variations and regressions for trend
forecasting. It analyzes past time series data to forecast and control
outlier values [28]. This technique is employed to analyze the historical
energy demand in Miraflores, Guaviare.

The model is formulated and adjusted through the following stages.
a) Identification: This involves determining the appropriate energy
consumption data to replicate the time series. b) Analysis and differ-
entiation of the time series to assess stationarity. ¢) Adjustment of the
ARIMA model to establish stationarity. d) Prediction: In this final stage,

Table 1

Elasticity matrix.
(i,j) Peak Off-Peak Valley
Peak -0.1 0.016 0.012
Off-Peak 0.016 -0.1 0.01
Valley 0.012 0.01 -0.1
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the goal is to probabilistically forecast the future behavior of the vari-
able of interest. We use the statistical programming language R and its
computing environment to simplify the development of the predictive
model.

4. Scenarios formulation
4.1. Numerical simulation

The proposed multi-period mathematical model’s functionality is
evaluated in four scenarios by applying the TOU and TOU+ INC models.
To do this, the baseline demand curve, or a daily average of the Mira-
flores municipality in the Guaviare department, is used, as illustrated in
Fig. 2.

An approximate average electricity price of USD 0.36/kWh is
considered, corresponding to the average electricity tariff for the first
quarter of 2023 applied to the residential sector of the municipality
[25-33]. For analytical purposes, the demand curve is divided into three
periods: the off-peak period (11:00 pm to 10:00 am), the valley period
(10:00 am to 7:00 pm), and the peak period (7:00 pm to 11:00 pm), and
electricity prices of USD 0.30, USD 0.33 and USD 0.41/kWh are estab-
lished in advance for each of these periods; These prices represent the
electricity rates that a generating agent can offer to a consumer user to
promote the non-existent price elasticity of electricity demand in Mir-
aflores, as well as the displacement of energy consumption from periods
with high electricity prices to periods with lower electricity prices.

The elasticity matrix requires the values of self-elasticity and cross-
elasticity, as used in various DR programs for the residential sector
[17] and in off-grid regions, as indicated in Table 1. These values of
elasticities indicate demand sensitization in a respective period (i) to
variations in the price of electricity in the remaining periods (j)

In the TOU+INC model, users receive economic incentives of USD
0.1/kWh in peak hours (30 % of average cost) and USD 0.07/kWh
during maximum solar radiation hours. This aims to promote self-
generation and the use of non-conventional renewable energy sources
at the residential level.

The effects of demand response (DR) on energy demand behavior are
analyzed based on prices and incentives in the following scenarios.

e Scenario 1

When applying the TOU model to 100 % diesel energy consumption,
the following are considered: i) Sensitivity only to energy consumption
with electricity price increases during peak hours. ii) Sensitivity to

1E'D | T T T T T T T T ¥ [ ' | . | . I = | ] |

170 -

160 -

150 -
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130 -
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Fig. 2. Reference curve Miraflores Consumption.
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energy demand during valley, peak, and off-peak periods due to changes
in electricity prices.

e Scenario 2

Application of the TOU+INC model to energy consumption with the
participation of economic incentives at an electricity price of USD 0.1/
kWh at peak solar radiation hours, i.e., from 10:00 am to 3:00 pm and
electricity prices set in advance of USD 0.30, USD 0.33 and USD 0.41/
kWh in off-peak and peak hours.

e Scenario 3

Incremental incentive recognitions and their respective percentages
of consumption reduction during peak hours are assumed as a consumer
response based on the proposed S-curve, as shown in Table 2. The
electricity prices and conditions of scenario two are maintained.

e Scenario 4

The ARIMA model analyzed valley, off-peak, and peak electricity
prices: USD 0.30, USD 0.33, and USD 0.41/kWh, respectively. A
comparative forecast of energy consumption based on the application of
the TOU+INC model was conducted using the following steps: a) Iden-
tification and organization of appropriate data to reproduce the time
series, b) Evaluation of the stationarity of the time series using the
Dickey-Fuller metho. Stationarity refers to the property of a time series
where the statistical properties such as mean, variance, and autocorre-
lation remain constant over time. c) Determination and adjustment of
the ARIMA model through the application of differences and logarithms
to achieve stationarity, d) Predictive capability of the model. Historical
energy consumption values are provided in Table 3, serving as a baseline
for the project until 2024 [34].

5. Results

Regarding scenario No. 1 option i), when the TOU model is applied,
there is a decrease in energy consumption during peak hours in response
to the increase in the price of electricity from USD 0.36/kWh to USD
0.41/kWh at times of peak demand, as shown in Fig. 3.

The reduction in consumption induced by the application of the
model is approximately 52.5 kWh/day, as shown in the comparison in
Fig. 4. This result addresses the issue of the current generation capacity
of Miraflores being oversized, as it currently meets peak demand periods
with only 45 % of its nominal capacity [35]. This inefficient scenario
leads to higher diesel fuel consumption and high operating temperatures
[36]. In this sense, applying the Demand Response (DR) model would
generate savings of approximately eight gallons/day in this scenario,
based on the specific fuel consumption methodology established in [37]
and the current installed diesel capacity.

Now in option ii of the same scenario, adjusting electricity prices
during different times of the day resulted in a change in consumption of
approximately 228 kWh, as shown in Fig. 5.

This change was not proportional to the decrease in consumption, as
shown in Fig. 6, indicating that the mathematical model reacts to
increased energy consumption by setting prices below USD 0.36/kWh.
To address this, it is suggested that differential tariffs based on hourly
segments be implemented to optimize energy consumption and promote
energy savings for each user. These tariffs would significantly impact the
current off-grid energy market in Miraflores.

Table 2

Percentage change in incentives vs. variation in load sensitivity.
INC (USD/kWh) 0.0875 0.1125 0.1375 0.150 0.2125
% Reduction 20 % 40 % 60 % 80 % (Bmax) 100 %
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Table 3
Historical monthly energy consumption data in MWh.
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2018 60.7 S58.8 64.8 58.0 64.5 59.4 65.0 69.1 72.2 73.8 77.0 75.8
2019 70.3 70.4 76.7 76.1 77.1 72.4 77.3 74.9 747 79.8 75.1 82.4
2020 78.1 78.1 83.1 76.3 77.5 74.0 75.0 75.0 75.0 79.3 80.2 77.8
2021 74.1 82.9 78.9 74.7 73.5 7213 75.4 77.8 82.6 84.4 88.2 76.5
2022 80.3 89.1 84.4 90.3 83.2 84.0 83.4 85.4 86.3 85.2 84.4 86.2

significant decrease in energy consumption that the consumer could

i T T T B O 2 O I O O B O compensate for without losing welfare in electricity use, using locally
available renewable energy potentials such as solar radiation through
19 self-generation [39]. From a tariff point of view, benefits are generated
for the consumer in terms of monetary savings due to a decrease in
160 + invoicing; this decrease impacts a lower subsidiary burden, which is
assumed by the state [38] (Table 4).
150 4 To analyze these results and identify and encourage energy savings,
the consumption before and after applying the DR TOU +INC model is as
E 140 4 follows: 941.5 kWh/day before and 738.3 kWh/day after. The difference
130 -
190 Ff I ¥ ¥ ¥ & ¥ 3 | : | oo i | A ERE SR |
120 ' '
180 - =
e _ do(i) _
110 - y — ——TOU Differential |
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Fig. 3. TOU energy performance. % .
140 4 -
In scenario 2, when comparing the results between base consumption 130 _ |
and recognizing an economic incentive of USD 0.1/kWh for the con- |
sumer from 10:00 am to 3:00 pm, Fig. 7 shows a substantial reduction in 120 - a
energy usage during this period, from approximately 941.5 kWh to ] ]
738.3 kWh. 110 - -
Similarly, when comparing the results of the TOU and TOU+INC LN N R T e e el

L] [ L L
i . o 2 4 6 8 10 12 14 16 18 20 22 24
models, it is observed that for the same period, consumption is reduced

from 842 kWh to 618 kWh. In Fig. 8, the DR models’ energy con- Time (hours)

sumption is compared with the base consumption, indicating a Fig. 5. TOU energy performance.

3526.2

KWH/DAY
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Fig. 4. DR Comparative.
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3750.5
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Fig. 6. DR Comparative.
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Fig. 7. TOU+INC energy performance.

of 203.2 kWh/day represents the overall savings of consumers who
decided to accept the price signals of a generating agent. As a hypoth-
esis, the reading of the energy measurement at the commercial border
level is proposed, where the sum of the individual consumptions is
registered. By reducing their consumption, they are granted a lower
value to pay in their invoices. The savings from a global point of view are
USD 119.5 per day.

In scenario 3, when differential incentives are applied during peak
hours, the graphical results in Fig. 9 show the impact of the percentage
change in economic incentives on the displacement and reduction of
energy consumption per day.

The reduction in energy consumption is measured based on the
findings in Table 5, indicating that a higher economic incentive in USD/
kWh leads to more excellent responsiveness in Demand Response (DR),
resulting in a more significant reduction in energy consumption when
the incentive is implemented. To validate the results, comparisons are
made with similar studies utilizing linear models, which have demon-
strated benefits such as reduced consumption and optimized tariffs,
among others [40].

In the context of scenario 4, the data representing the energy con-
sumption baseline exhibits non-stationarity, as depicted in Fig. 10. This
was confirmed through the application of the Dickey-Fuller statistical
test. In the verification process, confidence intervals at or above 0.95
and a p-value of 0.05 were used as criteria. However, the obtained p-
value of 0.0807 indicated the need for adjustments to the time series. To
address this, the statistical differentiation technique was employed [41].

This involved formulating a hypothesis that the data’s trend evolves
slowly over time, requiring adjustments for each time point to be close to
the previous one. Following this, a statistical p-value of 0.01 was ach-
ieved, signifying an appropriate seasonal adjustment of the time series
and proximity of its data to a mean of zero, as illustrated in Fig. 11.
Consequently, this paved the way for developing the ARIMA forecasting
model.

After applying the ARIMA model to the adjusted time series, Fig. 12
displays the expected trend of energy consumption in the short term,
specifically from 2023 to 2024. The monthly energy consumption
forecasts, along with the lower and upper confidence limits of 80 % and
95 %, are presented in Table 6. For instance, the predicted energy
consumption for August 2024 is 87,900 kWh. With 80 % confidence, the
energy consumption is expected to range between 73,000 kWh and
102,100 kWh. With a 95 % confidence interval, the expected range is
between 65,300 kWh and 109,800 kWh.

In this instance, there has been a noticeable rise in monthly energy
consumption since the beginning of the first quarter of 2023. This in-
crease can be linked to the growing trend of energy usage as indicated by
historical data. Also, the necessary data to compile a 24-hour energy
consumption record has been included. This is relevant because the
current daily supply in the municipality of M18 hs is approximately 18 h
[42].

When using the TOU+INC model to forecast energy consumption
and applying the Dickey-Fuller statistical technique, the behavior and
trend can be observed in Fig. 13, and the data is presented in Table 7.
The energy consumption obtained is lower compared to the base con-
sumption trend. For example, in August 2024, the predicted energy
consumption is expected to be 85.100 kWh. With an 80 % confidence
level, the energy consumption is projected to have a minimum value of
72.100 kWh and a maximum value of 97.800 kWh.

For a 95 % confidence interval, energy consumption is anticipated to
have a minimum value of 65.300 kWh and a maximum value of 104.600
kWh. These results demonstrate the positive impact of applying the TOU
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Fig. 8. Comparative DR.
Table 4
Equivalent UC results.
Parameters Energy DR (kWh) AC (kWh) ER (kWh) AUC (USD/kWh) EUCi. (USD/kWh) Billing with DR(USD) Billing without DR(USD)
Results 738.3 941.5 203.2 0.33 0.26 191.2 310.7
' ' ' ' ' ' ' amount of carbon dioxide (CO,) emissions using the Greenhouse Gases
ia0] == equivalence [43,44], the results in Fig. 15 show that applying the
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Fig. 9. Energy performance by incentive variation.
Table 5

Results decrease in consumption during peak hours according to the percentage
change in economic incentives.

INC (USD/kWh) 0.0875 0.1125 0.1375 0.150 0.2125

% Demand 20 % 40 % 60 % 80 % 100 %
Reduction 157.5 181.0 192.8 (Bmax) 240.0
(kWh) 216.4

+INC model in reducing projected energy consumption, as illustrated in
Fig. 14.

When considering CO» emissions reductions, it is essential to note
that most electricity generation in Miraflores municipality uses diesel
fuel. When converting emissions or energy data into an equivalent

TOU+INC model keeps CO- emissions at lower levels compared to the
scenario without DR implementation.

Reducing CO, emissions is crucial because it helps decrease the
carbon footprint. This is discussed in [45] and [46] and is relevant to the
off-grid areas of Miraflores, where most of the electricity generation is
mainly from diesel sources.

5.1. Comparations and limitations

The TOU model offers several significant advantages in off-grid re-
gions such as promoting energy efficiency, self-managing consumers to
modify their consumption patterns according to set energy prices,
reducing dependence on conventional sources, and boosting demand
elasticity. However, some limitations may arise in the application of the
Time Of Use model, for example, an inadequate signal of high electricity
prices declared by a generating agent can provoke an uncontrolled
displacement of demand towards periods of low electricity prices, which
would imply important imbalances in the supply-demand balance in the
respective period, however, this impact would be minimized with an
appropriate determination of the maximum hourly flexible demand to
be intervened [47]. Due to the linear nature of the proposed model, a
proper formulation of restrictions is necessary according to the scenarios
to be controlled.

From a technological perspective, the successful implementation of
the TOU model depends heavily on an appropriate electrical infra-
structure. In these off-grid regions, the limited availability of automated
equipment for residential consumption, as in the case of Miraflores,
Guaviare, leads to a limited reaction of consumers to pre-established
electricity rates. Although limiting, this scenario encourages strategies
to strengthen technological capabilities in these regions.

Comparing the results of the present research with other studies,
[48] identified the effect of a time-of-use pricing scheme on residential
electricity consumption in a rural region of Spain, using a so-called
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Difference-in-Difference approach, the results show that households
responded by reducing consumption during peak hours by up to 9 %,
which is similar to the results obtained from Figs. 3 and 4. The results
suggest that a predetermined pricing scheme can improve consumer
awareness and increase household price elasticity, making the TOU
model an effective tool to reduce peak electricity demand and improve
the efficiency of an electricity market. In [49] evaluated the results of a
novel load-shifting approach for 300 residential virtual users based on
TOU tariff and dynamic pricing conditions. The results indicate favor-
ability and positive economic effects when applying the TOU model
making visible its functionality as a means to validate load shifting
strategies, obtaining peak demand reduction from 10,741 kW to 7369
kW, complementarily the applied TOU model managed to reduce resi-
dential tariffs by 12.17 %, similar results in the tariff reduction of the
present study are related in Table 4. In [50] using a large-scale pilot test
TOU pricing for residential customers, the effects of TOU pricing on
residential customers’ load patterns and producers’ surplus in regions of
South Korea were analyzed, The results found effectively reduced and
shift energy consumption, generating billing benefits similar to the re-
sults obtained from Table 4, indicating that the TOU model is an effec-
tive measure to shift electricity consumption from periods with higher

marginal cost of generation to those with lower marginal cost of gen-
eration. Although revenues tend to decrease, the cost savings are higher
and the producer surplus increases. In [51] through a controlled trial in
the Irish residential electricity market in Ireland comprised of 5000
households, the response of households at different times of the day was
analyzed, when applying the TOU model there was a significant
reduction in electricity consumption during peak hours, identifying
favorable reactions with variations between 16.1 % and 37.1 %, similar
results of the present study, where an approximate reduction of 21 % is
observed in Fig. 3.

Concerning the possible regulatory, social, and economic obstacles
that could arise in the actual implementation of the model, the main
barriers that have been identified from the results of this research are as
follows.

Regulatory barriers: The most relevant obstacle to the application in
the Off-grid regions of Colombia is related to the regulatory aspect, due
to the insufficient regulatory maturity for these regions. Although there
are important advances in energy policies, such as the implementation
of the energy transition law (2099 of 2021) that seeks to promote effi-
cient energy management and demand response, the application for off-
grid regions has not been regulated. On the other hand, in Colombia, the
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Fig. 12. Base energy consumption forecast.
Table 6 Table 7
Energy consumption forecast results (Thousands of kWh) without DR. Energy consumption forecast results (Thousands of kWh) with DR+INC.
Point Forecast Lo 80 Hi 80 Lo 95 Hi 95 Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
Apr 2023 g1.8 85.8 97.9 82.6 101.1 Apr 2023 01.2 86.9 95.6 84.6 97.9
May 2023 88.4 81.9 04.9 78.5 08.4 May 2023 87.6 82.7 Q2.4 80.2 05.0
Jun 2023 88.9 Q1.9 05.8 78.3 01.4 Jun 2023 88.0 82.7 Q3.3 79.9 06.1
Jul 2023 87.2 79.9 0945 76.1 08.4 Jul 2023 85.5 79.7 91.2 76.7 04.3
Aug 2023 88.0 80.4 05.7 76.3 09,7 Aug 2023 86.8 80.6 92.9 77.4 06.2
Sep 2023 86.5 78.5 04.5 76.3 08.8 Sep 2023 84.2 77.7 90.8 74.3 04.2
Oct 2023 86.0 77.7 04.4 73.3 08.9 Oct 2023 83.9 77.0 a0.8 73.4 04.4
Nov 2023 85.1 76.4 03.8 71.8 08.4 Nov 2023 83.2 75.9 90.4 72.1 04.2
Dec 2023 89.3 80.2 08.2 75.5 102.9 Dec 2023 88.3 80.8 95.9 76.8 99.8
Jan 2024 87.5 77.2 97.9 71.7 103.5 Jan 2024 88.4 80.6 06.3 76.5 100.4
Feb 2024 87.6 76.5 08.7 70.7 104.5 Feb 2024 84.2 76.0 Q2.3 71.7 96.6
Mar 2024 87.6 75.9 00.3 69.6 105.5 Mar 2024 84.2 75.8 Q2.6 71.3 97.1
Apr 2024 87.7 75.2 99,9 68.7 106.5 Apr 2024 85.0 74.8 05.1 69.4 100.5
May 2024 87.8 74.6 100.5 67.8 107.4 May 2024 85.1 74.1 05.8 68.3 101.6
Jun 2024 87.8 74.1 101.6 66.9 108.2 Jun 2024 85.2 73.4 06.5 67.2 102.7
Jul 2024 87.8 73.5 101.7 66.1 109.0 Jul 2024 85.0 72.7 Q7.2 66.2 103.7
ﬁug 2024 87.9 73.0 102.1 65.3 109.8 Aug 2024 85.1 72.1 Q7.8 65.3 104.6
Sep 2024 87.8 72.6 102.6 64.6 110.6 Sep 2024 85.0 71.5 98.4 64.4 105.5
Forecasts from ARIMA(0,1,1)(0,0,1)[12]
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Fig. 13. Energy consumption forecast for application of DR TOU+INC.
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Energy and Gas Regulatory Commission has developed a Roadmap for
Demand Response (document CREG 001-2022), however, its applica-
tion environment is the regions connected to the Grid. One strategy to
encourage policymakers is to spread the benefits to communities and
raise awareness about them. These benefits include lower energy bills,
improved environmental quality due to reduced CO2 emissions as
illustrated in Fig. 15, decreased energy subsidies by the state, and
reduced reliance on diesel fuel for electricity generation in these regions
where about 84 % of capacity comes from that source Economic barriers:
When communities are low-income, consumption habits may not be
amenable to change, leading to disparities in access to the benefits of the
TOU model.

5.2. Financial implications

To analyze the long-term financial repercussions from the demand
side when comparing the results and incentivizing energy savings,
consumption before and after applying the DR TOU + INC model is
941.5 kWh/day and 738.3 kWh/day respectively. The difference of
203.2 kWh/day represents the global savings of consumers who decided
to accept the price signals of a generating agent. According to the results
of Eq. 5 and Table 4 in a 5-year horizon, the billing savings are USD
119.5 per day equivalent to USD 215,100 indicating a high level of
probability on the time horizon of a positive financial impact. On the
other hand, due to the geographical and remote characteristics of off-
grid regions [34] likely, the implementation costs of the TOU model
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and the associated technologies incurred by suppliers will increase the
initial investment costs, causing longer recovery periods. This financial
impact can be minimized by taking maximum advantage of renewable
resources locally and incorporating efficient technologies [48]

5.3. Discussions

From the results obtained in the application of the TOU model for the
four scenarios, potential benefits for consumers and communities are
evident. Regarding consumers, as illustrated in Table 4, the decrease in
energy consumption by 203.2 kWh/day led to a reduction in monthly
energy bills, in that sense the expectation of a materialized reduction
promotes consumer participation in informed decision-making and
boosts predictability in energy expenditure. From the technological
point of view, although it is not a topic that is developed in this research,
intelligent and automatic equipment is necessary for the management of
demand response for consumers to make informed decisions; this
articulation promotes new knowledge in the communities of the regions
not connected to the grid. To the results in Fig. 7 and Fig. 8 where energy
consumption was reduced from 941.5 kWh to 738.3 kWh and from 842
kWh to 618 kWh by applying the TOU and TOU +INC models respec-
tively, consumers benefit from the reduction in their bills and stimu-
lating the use of renewable energies.

In terms of the benefits to communities, the results show that the
TOU model is a great articulator that promotes community cooperation
by identifying that individual benefits can be achieved by all members of
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a community benefiting from differential tariffs in the off-peak, peak,
and valley segments. About consumer participation strategies, the
document is characterized by a technical study, the origin of the impact
of the TOU model originates in the generation offer formulated by the
generating agent to the community who make decisions to accept the
price signals and incentives based on the benefits it represents

6. Conclusions

Throughout our ongoing research, we have noted a significant in-
crease in the volume of literature concerning Demand Response man-
agement from the standpoint of consumers. Additionally, the research
has brought to light the favorable impact of this approach on reducing
energy consumption. The findings suggest that offering economic in-
centives, such as price signals to consumers, encourages changes in
energy consumption patterns, including load reduction and load shift-
ing. This cost-effective approach reduces energy consumption and CO,
emissions, lowers diesel fuel consumption, and decreases electricity
prices. In contrast, Colombia’s current energy market in off-grid regions
does not have differentiated tariffs. Introducing economic incentives
could be an opportunity to propose a new tariff model that shifts from
static tariffs to dynamic ones. In a simulated scenario, we investigated
the impact of demand elasticity on short-term energy consumption in
the municipality of Miraflores. This was accomplished by utilizing the
TOU+INC model, which resulted in a noteworthy reduction in energy
consumption and projected displacement. Furthermore, upon
comparing the projected emissions with the base case, we observed a
substantial decrease in CO, emissions by employing the TOU+INC
model. These results indicate a promising avenue for greater compliance
with emissions reduction commitments and energy efficiency regula-
tions. Given the unique conditions of the NIZ, including the limited
ability of residential users to make payments, the scarcity of efficient
technology for electricity use, and the lack of awareness about the ad-
vantages of Demand Response, it is crucial to delve deeply into these
aspects to mitigate the risks associated with transitioning to a new en-
ergy market based on demand management.

The modeling and validation of the energy demand behavior in the
municipality of Miraflores by incorporating demand response (DR)
programs, specifically the TOU model with the addition of incentives
(TOU + INC), provides an opportunity for this approach to be replicated
in other non-interconnected areas with similar energy characteristics to
those of Miraflores. The cost of electricity plays a significant role in
determining consumer behavior in off-grid regions. Under current en-
ergy market conditions, differential pricing notably impacts the
decision-making process regarding electricity consumption at specific
times. This has been demonstrated by applying the TOU and TOU+INC
models, indicating that varying electricity prices influence consumption
behavior across different time segments. The flexibility of Demand
Response allows it to work well with the varying energy supply from
renewable sources, which depends on the weather conditions. This
means energy consumption can be shifted from peak to off-peak periods
when renewable energy production is higher. As a result, this can help
manage generation costs over time, leading to more favorable electricity
prices and the potential for implementing hybrid energy systems.

Regarding regulations, distributed renewable energy is well posi-
tioned for growth in off-grid areas. For example, Decree 388 of 2016
from Colombia’s Energy and Gas Regulatory Commission allows for
adjusting existing tariff formulas to create a unique scheme that en-
courages consumers to save energy.

Although communication strategies for appropriate price signaling
are not developed in this investigation, appropriate communication
between a network operator and consumers can be achieved through
mobile applications, programmed mass outreach campaigns, SMS mes-
sages, call centers, as well as websites. On the other hand, through
monitoring and smart metering, consumer participation and adaptation
to hourly tariffs can be achieved.
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Regarding the elasticity of demand, its adhesion to the real world
depends mainly on some variables such as economic, social, and
behavioral variables of each user. It is necessary to make a gradual
process of evaluation of the incidence of these variables in the result of
the TOU model, which would add a new dimension to the present
research and be developed in future works.
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